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The hydrodynamic stability of a generalized nonlinear viscoplastic fluid under 
plane gradient flow is studied in the linearized theory. 

The hydromechanics of fluids with complex rheological properties are of great interest 
in modern engineering processes. The mechanical properties of many real fluids can be de- 
scribed by a generalized nonlinear viscoplastic fluid model of the form [I]: 

Here ~ = #ffijfij is the magnitude of the deformation rate tensor given by fij = (i/2)" 

(Sui/3x i + 3uj/gxi). 

Below we study the hydrodynamic stability for stationary gradient flow of the rheologi- 
cally complex medium (i) in a plane channel against infinitestimal two-dimensional per- 
turbations. 

Let the fluid (1) move in a plane channel under a longitudinal pressure gradient 3P/3x = 
const < 0. Because of the presence of the yield stress To in the rheological equation (i), 
under stationary flow a quasirigid region will be formed in the center of the channel where 
the deformation vanishes: ~ -0. In the viscoplastic flow region near the edge of the chan- 
nel, the velocity of motion of the fluid U = U(y) for the lower half of the channel will be 
given by 

t n 4 - m  [ ( - -g) l /~- -~ l /n lmdy ,  - - l ~ g ~ - - ~ ;  
U =  n 

--I 

U ( - ~ )  = const, - -  ~ V ~ 0 ,  (2) 

where  g i s  t h e  d i m e n s i o n l e s s  h a l f - w i d t h  o f  t h e  q u a s i r i g i d  r e g i o n .  T h i s  i s  d e t e r m i n e d  f r o m  
t h e  e q u i l i b r i u m  c o n d i t i o n  

17 ]n/m / n/m 
= •  - -  , •  �9 

1l.-}-172 

We introduce the dimensionless stream function ~ = ~(x, y, t) satisfying u x = 3~/3y, Uy = 
--~/3x. Then 9 will be given by 

9 

(x, y, t)= i' Udg~(y) exp[ia(x--ct)], 
0 

where ~ and ~c are the wave number and complex frequency of the perturbation, respectively. 

Linearizing the equation of motion for the perturbation with respect to the amplitude 
~=~(d) of the perturbation as in [2], we obtain the ordinary differential equation 

( u - -  c) (q,"-- ~ )  - -  u"q, - I { i~l~e (q~v--2~qr + ~,p) ~o § 
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: 2n'~176 no (r + ~zZq))+ [u' ( dn ) ~  o (q)" + a~q)) ]" + a~u' (-7~ff~dn)o (q),, + oc~q))} , (3) 

which is valid in the viscoplastic region as well as in the quasirigid core. The subscript 
0 denotes the unperturbed flow and a prime means differentiation with respect to y. ~ = n(m) 
is a dimensionless apparent viscosity which is a function of the magnitude of the deformation 
rate tensor~q [3]. Finally, o~=QL/Uo; Re:oL"/'~U~ .... /n/~n/~ is the generalized Reynolds number. 

In the viscoplastic flow region ~] = [I q-• -- 1 ~y~--~ and (3) is supplemented by 
the boundary conditions [2] 

q)' ( - -  1) = ~ ( - -  1) = q)'" (0) = qo' (0) = 0. (4) 

Accord ing  to the  t h e o r y  of  a s y m p t o t i c  e x p a n s i o n s  of  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s ,  t he  f o u r  
l i n e a r l y  i n d e p e n d e n t  s o l u t i o n s  o f  (3) in  t h e  v i s c o p l a s t i c  f low r e g i o n  - - l ~ y ~ - - ~  have  the  
form [4,  5] 

k = O  k : O  

:~3,4 = i dz i zl/2r'(l'2)'131/3 [._~_2 (iZ)8/2] dz @ 0 [(g l~e)-l/3], 
~ 0  

• 4 -~  

where z:(y--go)/(aReU'(yJ/a) and the coefficients ak, b k are given by recurrence relations [5]. 

In the core region --~y-~0 the corresponding solution is [5, 6]: 

* = exp(4- ~y), (Pl ,2  
~*,4 : exp {4- 1#/-~-~- i I(U--c)/@o q-U" {d~l~]l/~" ~ ~ do ]o/J dy} {1 @O[(~Re)-l/2]}. 

The general solution of (3) is then given by 

4 

N= 1 
4 

~*= ~ ~q~, -~<v~<o. (5) 

The solution (5) must satisfy the boundary conditions (4) and the matching condition 

dAq) dhqD * 
dg A (--~)-- dg ~ (--~), k = O ,  1, 2, 3, (6) 

which  to o r d e r  O(aRe) -~ /3  l e a d s  to  the  s e c u l a r  e q u a t i o n :  

I q~" (--  I) ~ (--  1) l 
%(-- 1) _ ] q)~(--~) ~- ot%(--~)  thc,~ qD~ (--~) q-ocq>.~(--~) thc~ 

~;(--I) 1~;(-- I) Wi(-- I) 1 (7) 
qo; (-- ~) -}- a% (-- ~) tha~ ~i (-- ~) + c~% (-- ~) th oil 

Thus, the study of stability of the fluid (i) reduces to finding the eigenvalues of the 
secular equation (7). 

In Fig. 1 we show neutral stability curves in the (~, Re) plane, constructed from the 
numerical solution of (7) for different values of m and n and different sizes of the quasi- 
rigid zone $. 

The dependence of the critical Reynolds number Recr on the rheological constants m, n 
and the width ~ is shown in Figs. 2-4. Clearly, an increase in the rheological constant 
m (n > i) increases the value of the critical Reynolds number Recr at which loss of stability 
occurs. An increase in the rheological constant n at constant m destabilizes the flow 
(Fig. 3). 

The effect of the rheological parameters of the medium on the flow stability can be ex- 
plained by the effect of Reynolds stress on the transfer of energy from the unperturbed flow 
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Fig. 1. Neutral stability curves for m = 0,8 (~ = 0.4 for 
the solid curves, ~ = 0.6 for the dashed curves): l) n = 0.4; 
2) 0,6; 3) 0.8; 4) i. 

Fig. 2, Dependence of Recr on m for ~ = 0.4: i) n = i; 2) 
2; 3) 2.5; 4) 3. 
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Fig. 3 

Fig. 3, Dependence of Recr on n for ~ = 0.4: 
0,8; 3) 0.6, 

Fig, 4. Dependence of Recr on $ for n = 2,5: 
2; 3) 1.5; 4) i, 
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Fig. 4 

i) m = i; 2) 

i) m = 2.5; 2) 

to the perturbation. It is known [2] that a distortion of the velocity profile of the un- 
perturbed flow at the critical point, given by the ratio of the derivatives d2U(yc) { dU(9~) ~-i, 
strongly affects the Reynolds stress, dy2 ~ dy ) 

form 
In our model the dependence of the Reynolds stress on the rheological parameters has the 

l--n 

This relation can also be used to interpret the dependence of the critical Reynolds number 
on the rheological constants m and n and the half-width of the quasirigid region ~ observed 
in Figs. 2-4, The quasirigid region significantly affects the growth of perturbations in the 
flow. An increase in the half-width of the quasirigid region ~ stabilizes the flow (Fig. 4). 
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The rheological model (i) is a generalization of several well-known models. For ex- 
ample, if the yield stress to vanishes, Eq. (i) reduces to a rheological power-law equation. 
When m = n (to = 0) we obtain an ordinary Newtonian fluid. The value of Recr for to = 0 and 
m = n reduces to the value for a Newtonian fluid [2] (Fig. 4). Our results for Recr in the 
case T = 0 (Fig. 4) reduce to those for a non-Newtonian fluid with a rheological power law [6]. 

NOTATION 

ui, velocity vector components; to, yield stress; ~, shear viscosity; m, n, rheological 
constants; U, velocity of the unperturbed flow; ~, wave number; L, channel width; p, density; 

perturbationamplitude; c, phase velocity; Uo, characteristic velocity; H!~ 2), Hankel func ~ q, 
tions of the first and second kind of order 1/3; T, Reynolds stress. 

1. 

2. 
3. 

4. 
5. 
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HYDRODYNAMIC INSTABILITY OF THE AXISYMMETRIC FLOW OF AN IDEAL 

FLUID WITH AN INTERPHASE 

V. E~ Epikhin and V. Ya. Shkadov UDC 532.5.013.4 

We study the instability under simultaneous rotational and translational flow of 
a fluid and ambient medium in the cases of a cylindrical annular jet, capillary 
jet, and cylindrical fluid layers on the inner and outer surfaces of a cylinder. 

The type of flow under study is schematically illustrated in Fig. i. Reviews of the 
literature and some new experimental results on instabilities of jets can be found in [1-9]. 
The stability of a fluid on a rotating cylindrical surface was studied in [i0, ii]. In the 
present paper the stability of potential flow is considered in the most general formulation. 
Such flows are used in vaporizers, heat-transfer devices, chemical reactors, in the paper- 
pulp industry, and also in vertical--centrifugal methods of producing mineral fibers [ii]. 

In a cylindrical coordinate system with the axis of coordinates taken along the symmetry 
axis of the problem, the flow is described by the potential functions 

~,~ = U~,~X -b r~,iO. (1) 

where the second term in both equations gives the velocity potentials of line vortices along 
the axis of rotation with circulations 2~Pf, 2~re, Z~Pi, respectively [i]. At t = 0 a potential 
wave perturbation of infinitesimal amplituHe is applied to the unperturbed flow. The poten- 
tial functions of nonsteadymotion satisfy the Laplace equation and the Cauchy--Lagrange integral in 
a flow region to be determined as part of the solution. The boundary conditions express the jump in the 
normal stress due to surface tension, the continuity of streamline flow at the boundaries, 
and the boundedness of the potentials on the axis and at infinity, and also the periodicity 
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